最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。

程序分析:

(1)最小公倍数=输入的两个数之积除于它们的最大公约数,关键是求出最大公约数;

(2)求最大公约数用辗转相除法(又名欧几里德算法)

1)证明:设c是a和b的最大公约数,记为c=gcd(a,b),a>=b,
令r=a mod b
设a=kc,b=jc,则k,j互素,否则c不是最大公约数
据上,r=a-mb=kc-mjc=(k-mj)c
可知r也是c的倍数,且k-mj与j互素,否则与前述k,j互素矛盾,
由此可知,b与r的最大公约数也是c,即gcd(a,b)=gcd(b,a mod b),得证。

2)算法描述:

第一步:a ÷ b,令r为所得余数(0≤r 第二步:互换:置 a←b,b←r,并返回第一步。
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29),
∴ (319,58)=(58,29);
∵ 58÷29=2(余0),
∴ (58,29)= 29;
∴ (319,377)=29.

用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。

程序源代码:
    #include<stdio.h>
int main()
{
    int a,b,t,r;
    printf("请输入两个数字:\n");
    scanf("%d %d",&a,&b);
    if(a<b)
    {t=b;b=a;a=t;}
    r=a%b;
    int n=a*b;
    while(r!=0)
    {
        a=b;
        b=r;
        r=a%b;
    }
    printf("这两个数的最大公约数是%d,最小公倍数是%d\n",b,n/b);
    
    return 0;
}

以上实例输出结果为:

请输入两个数字:
12 26
这两个数的最大公约数是2,最小公倍数是156